Estimation of Dose Enhancement for Inhomogeneous Distribution of Nanoparticles: A Monte Carlo Study
نویسندگان
چکیده
High atomic number nanoparticles are of increasing interest in radiotherapy due to their significant positive impact on the local dose applied treatment site. In this work, three types metal were utilized investigate enhancement based GATE Monte Carlo simulation tool. Gold, gadolinium, and silver implanted at different concentrations a 1 cm radius sphere mimic cancerous tumor inside 10 × 30 cm3 water phantom. The innermost layer represents necrotic region, where uptake is assumed be zero, arising from hypoxic conditions. defined using mixture technique, added chemical composition tumor. A directional 2 cm2 monoenergetic photon beam was used with several energies ranging 50 keV 4000 keV. factor (DEF) measured for all under energies. maximum DEF ~7 energy highest nanoparticle concentration mg/g water. Gold followed same trend as it registered mg/g, while gadolinium 100
منابع مشابه
Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and Monte Carlo simulation
Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentrati...
متن کاملA Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays
Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed.Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs) in the tumor.Method...
متن کاملSize Effects of Gold and Iron Nanoparticles on Radiation Dose Enhancement in Brachytherapy and Teletherapy: A Monte Carlo Study
Introduction In this study, we aimed to calculate dose enhancement factor (DEF) for gold (Au) and iron (Fe) nanoparticles (NPs) in brachytherapy and teletherapy, using Monte Carlo (MC) method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192) brachytherapy and Cobalt-60 (Co-60) teletherapy sources, using...
متن کاملElectron Dose Distributions in Inhomogeneous Phantoms: a Monte Carlo Study
Dose distributions in different models of inhomogeneous phantoms irradiated with 3 19 MeV electron beams have been calculated using DOSXYZnrc/EGSnrc Monte Carlo code. The rectilinear 3D voxel phantoms, relevant for radiotherapy and clinical dosimetry, were built from ICRU soft tissue equivalent material in which was inserted a single layer of bone, lung, air or Titanium. Significant interface e...
متن کاملmegavoltage dose enhancement of gold nanoparticles for different geometric set-ups: measurements and monte carlo simulation
background: gold nanoparticles (gnps) have been shown as a good radiosensitizer. in combination with radiotherapy, several studies with orthovoltage x-rays have shown considerable dose enhancement effects. this paper reports the dose enhancement factor (def) due to gnps in 18 megavoltage (mv) beams. materials and methods: different geometrical 50-nm gnps configurations at a concentration of 5 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11114900